Dr Samuel Rowley-Neale

My profile

Biography

I specialise in the utilisation of electrochemical techniques for the testing and production of state-of-the-art clean energy storage and detection devices.

My research focuses on the application of cutting edge 2D advanced materials within 3D printing technologies to find new and future-proof ways of storing energy – my goal is to create a breakthrough technology that enables the rapid 3D printing of water electrolysers, as this will allow for the on-site and immediate generation of hydrogen gas, to be used as an energy source, within disaster relief scenarios. I also conduct fundamental research into the development of electrochemical heavy metal sensors in order to help their removal from our drinking water supply.

I am a passionate environmentalist (holding a degree in Zoology and an MSc in Environmental Management and Sustainable Development). This has led me to work with a plethora of local SMEs to educate them on renewable energy sources and develop next-generation fuel cell and hydrogen devices. As well as conducting research and liaising with local businesses.

Interests and expertise

The knowledge and skills I have learnt throughout my academic career have enabled me to become involved in my hobbies and interests in some very unique and interesting ways.

For example, in addition to my role as a Lecturer here at Manchester Metropolitan University I am the CEO of a drinks distillery. I learnt the experimental distillation processes that my distillery uses during higher education studying chemical processes.

Additionally, I have a passion for the field of Horology and have been able to apply my knowledge within the field of 2D-nanomaterials to embark on an exciting project to produce a watch, in collaboration with the legendary Dr Roger Smith OBE, that will never require servicing. 

All of my successes and endeavours have resulted directly from the things I have learnt as as well as from the people I have had the fortune to be involved with. That’s why I believe Manchester Metropolitan University is such a great institution as it has world leading academics and facilities to teach and inform, whilst being situated in the heart of one of the worlds most interesting and exciting cities.

Projects

Knowledge Transfer Partnerships

  • Dr Rowley-Neale and Professor Craig Banks in conjunction with AquaCheck Engineering embarked on a 36 month project in order to produce a portable electrochemical lead sensor. (2019-Present)
  • Dr Rowley-Neale and Professor Craig Banks in conjunction with the European Marine Energy Centre (EMEC) partnered to investigate the application of 2D advanced materials as cost effective alternatives to precious metals within fuel cell technologies. (2019-2021)

Funded Projects

  • CIRMAP is a Interreg North-West Europe funded project. In North West Europe, about 65 Mt of Recycled Fine Aggregates (RFA) are generated yearly from the crushing of Concrete Construction and Demolition Wastes and are disposed in landfills or in banks. In the meantime, 54 Mt of marine sands are extracted in zones where natural aggregate resources are missing, threatening fragile marine spaces. Reusing RFA in concrete would save natural resources.vCirmap will provide a new Mixture Proportioning Method (MPM) for the design of 3DP mortars with RFA and a new Design Methodology for Customized Shapes (DMCS).
  • ECO-Iis a European Regional Development Fund (ERDF) funded project. The business landscape has changed. The transition to a low carbon economy has already begun and this project helps SMEs develop new products and services, adopt a future-ready business model, and reduce the carbon intensity of your operations.
  • Manchester Fuel Cell Innovation Centre (MFCIC) is a European Regional Development Fund (ERDF) funded project. The MFCIC landmark £4.1m state-of-the-art laboratories, leading the way in harnessing renewable energy. The Centre is exploring the pure science of the fuel cell itself, driving engagement with industry on a local, national and international scale, and developing the technology talent of tomorrow.

Research outputs

Prizes and awards

2018 EPSRC Clean energy grant - 100,000. The grant was to explore the use of 2D-MoS2 as a cost effective alternative to Pt within electrolysers, thereby allowing for a reduction in the cost of hydrogen making it more competitive with fossil fuel counterparts.

Expert reviewer for external academic bodies

Reviewer for the following academic journals:

  • Microchimica Acta
  • Electrochimica Acta
  • MDPI - molecules
  • MDPI -  Biosensors
  • ACS Applied Energy Materials
  • RSC ChemComm

Publications:

Khan, A. F., Ferrari, A. G. M., Hughes, J. P., Smith, G. C., Banks, C. E., & Rowley-Neale, S. J. (2022). 2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions. Sensors, 22(9). doi:10.3390/s22093330

Amin, M., Abdullah, B. M., Rowley-Neale, S. J., Wylie, S., Slate, A. J., Banks, C. E., & Whitehead, K. A. (2022). Diamine Oxidase-Conjugated Multiwalled Carbon Nanotubes to Facilitate Electrode Surface Homogeneity. Sensors, 22(2). doi:10.3390/s22020675

Ferrari, A. G. M., Pimlott, J. L., Down, M. P., Rowley-Neale, S. J., & Banks, C. E. (2021). Correction to:MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms(Adv. Energy Mater., (2021), 11, (2100433), 10.1002/10.1002/aenm.202100433). Advanced Energy Materials, 11(45). doi:10.1002/aenm.202102514

Crane, B., Hughes, J. P., Rowley Neale, S. J., Rashid, M., Linton, P. E., Banks, C. E., & Shaw, K. J. (2021). Rapid antibiotic susceptibility testing using resazurin bulk modified screen-printed electrochemical sensing platforms. The Analyst. doi:10.1039/d1an00850a

Kulczyk-Malecka, J., Santos, I. V. J. D., Betbeder, M., Rowley-Neale, S. J., Gao, Z., & Kelly, P. J. (2021). Low-temperature synthesis of vertically aligned graphene through microwave-assisted chemical vapour deposition. Thin Solid Films, 733. doi:10.1016/j.tsf.2021.138801

Garcia-Miranda Ferrari, A., Pimlott, J. L., Down, M. P., Rowley-Neale, S. J., & Banks, C. E. (2021). MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms. Advanced Energy Materials. doi:10.1002/aenm.202100433

Hughes, J. P., Clipsham, J., Chavushoglu, H., Rowley-Neale, S. J., & Banks, C. E. (2021). Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. Renewable and Sustainable Energy Reviews, 139. doi:10.1016/j.rser.2021.110709

Srinivasa, N., Hughes, J. P., Adarakatti, P. S., Manjunatha, C., Rowley-Neale, S. J., Ashoka, S., & Banks, C. E. (2021). Facile synthesis of Ni/NiO nanocomposites: The effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media. RSC Advances, 11(24), 14654-14664. doi:10.1039/d0ra10597j

Hughes, J. P., Rowley-Neale, S., & Banks, C. (2021). Enhancing the efficiency of the hydrogen evolution reaction utilising Fe3P bulk modified screen-printed electrodes via the application of a magnetic field. RSC Advances, 11, 8073-8079. doi:10.1039/d0ra10150h

Garcia-Miranda Ferrari, A., Rowley-Neale, S. J., & Banks, C. E. (2021). Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open, 3. doi:10.1016/j.talo.2021.100032

Garcia-Miranda Ferrari, A., Rowley-Neale, S. J., & Banks, C. E. (2020). Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms.. Analytical and Bioanalytical Chemistry. doi:10.1007/s00216-020-03068-8

Scremin, J., Mattos, G. J., Crapnell, R. D., Rowley-Neale, S. J., Banks, C. E., & Sartori, E. R. (2020). Glassy Carbon Electrode Modified with Layering of Carbon Black/Poly(Allylamine Hydrochloride) Composite for Multianalyte Determination. Electroanalysis, 33(2), 526-536. doi:10.1002/elan.202060172

Srinivasa, N., Shreenivasa, L., Adarakatti, P. S., Crapnell, R. D., Rowley-Neale, S. J., Siddaramanna, A., & Banks, C. E. (2020). Functionalized Co3O4 Graphitic Nanoparticles: A High Performance Electrocatalyst for the Oxygen Evolution Reaction. International Journal of Hydrogen Energy, 45(56), 31380-31388. doi:10.1016/j.ijhydene.2020.08.231

Scremin, J., Joviano dos Santos, I. V., Hughes, J. P., Garcia-Miranda Ferrari, A., Valderrama, E., Zheng, W., … Banks, C. E. (2020). Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction. Nanoscale, 12(35), 18214-18224. doi:10.1039/d0nr04336b

Garcia-Miranda Ferrari, A., Carrington, P., Rowley-Neale, S. J., & Banks, C. E. (2020). Recent advances in portable heavy metal electrochemical sensing platforms. Environmental Science: Water Research & Technology, 6(10), 2676-2690. doi:10.1039/d0ew00407c

Amin, M., Rowley-Neale, S. J., Shalamanova, L., Lynch, S., Wilson-Nieuwenhuis, J., El Mohtadi, M., … Whitehead, K. A. (2020). Molybdenum Disulphide Surfaces to Reduce Staphylococcus aureus and Pseudomonas aeruginosa Biofilm Formation.. ACS applied materials & interfaces, 33 pages. doi:10.1021/acsami.0c02278

Rowley-Neale, S. J., Brownson, D. A. C., Smith, G., & Banks, C. E. (2020). Graphene Oxide Bulk-Modified Screen-Printed Electrodes Provide Beneficial Electroanalytical Sensing Capabilities. Biosensors, 10(3), 27. doi:10.3390/bios10030027

Jamieson., Soares., Faria., Hudson., Mecozzi., Rowley-Neale., … Crapnell. (n.d.). Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors. Chemosensors, 8(1), 5. doi:10.3390/chemosensors8010005

dos Santos, P. L., Rowley-Neale, S. J., Garcia-Miranda Ferrari, A., Bonacin, J. A., & Banks, C. E. (2019). Ni−Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3D-Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 6(22), 5633-5641. doi:10.1002/celc.201901541

Garcia-Miranda Ferrari, A., Brownson, D. A. C., Abo Dena, A. S., Foster, C. W., Rowley-Neale, S. J., & Banks, C. E. (2019). Tailoring the electrochemical properties of 2D-hBN via physical linear defects: physicochemical, computational and electrochemical characterisation. Nanoscale Advances, 2(1), 264-273. doi:10.1039/c9na00530g

Hughes, J. P., dos Santos, P. L., Down, M. P., Foster, C. W., Bonacin, J. A., Keefe, E. M., … Banks, C. E. (2020). Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustainable Energy & Fuels, 4(1), 302-311. doi:10.1039/c9se00679f

Hughes, J. P., Blanco, F. D., Banks, C. E., & Rowley-Neale, S. J. (2019). Mass-producible 2D-WS2 bulk modified screen printed electrodes towards the hydrogen evolution reaction. RSC Advances, 9(43), 25003-25011. doi:10.1039/c9ra05342e

Adarakatti, P. S., Mahanthappa, M., Hughes, J. P., Rowley-Neale, S. J., Smith, G. C., S, A., & Banks, C. E. (2019). MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 44(31), 16069-16078. doi:10.1016/j.ijhydene.2019.05.004

Baccarin, M., Rowley-Neale, S. J., Cavalheiro, É. T. G., Smith, G. C., & Banks, C. E. (2019). Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. Microchimica Acta, 186(3). doi:10.1007/s00604-019-3315-y

Srinivasa, N., Shreenivasa, L., Adarakatti, P. S., Hughes, J. P., Rowley-Neale, S. J., Banks, C. E., & Ashoka, S. (2019). In situ addition of graphitic carbon into a NiCo2O4/CoO composite: Enhanced catalysis toward the oxygen evolution reaction. RSC Advances: an international journal to further the chemical sciences, 9(43), 24995-25002. doi:10.1039/c9ra05195c

Rowley-Neale, S. J., Ratova, M., Fugita, L. T. N., Smith, G. C., Gaffar, A., Kulczyk-Malecka, J., … Banks, C. E. (2018). Magnetron Sputter-Coated Nanoparticle MoS<inf>2</inf> Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. ACS Omega, 3(7), 7235-7242. doi:10.1021/acsomega.8b00258

Pierini, G. D., Foster, C. W., Rowley-Neale, S. J., Fernández, H., & Banks, C. E. (2018). A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.. The Analyst, 143(14), 3360-3365. doi:10.1039/c7an01982c

Martínez-Periñán, E., Bravo, I., Rowley-Neale, S. J., Lorenzo, E., & Banks, C. E. (2018). Carbon Nanodots as Electrocatalysts towards the Oxygen Reduction Reaction. Electroanalysis, 30(3), 436-444. doi:10.1002/elan.201700718

Down, M. P., Rowley-Neale, S. J., Smith, G. C., & Banks, C. E. (2018). Fabrication of Graphene Oxide Supercapacitor Devices. ACS Applied Energy Materials, 1(2), 707-714. doi:10.1021/acsaem.7b00164

Rowley-Neale, S. J., & Banks, C. E. (2018). Electrocatalytic properties of carbon electrode surfaces. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (pp. 531-538). doi:10.1016/B978-0-12-409547-2.13370-0

Rowley-Neale, S. J., & Banks, C. E. (2018). Biosensors-microelectrode design and operation. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (pp. 72-80). doi:10.1016/B978-0-12-409547-2.13498-5

Rowley-Neale, S. J., Randviir, E. P., Abo Dena, A. S., & Banks, C. E. (2018). An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today, 10, 218-226. doi:10.1016/j.apmt.2017.11.010

Yadegari, A., Samiee, L., Tasharrofi, S., Tajik, S., Rashidi, A., Shoghi, F., … Banks, C. E. (2017). Nitrogen doped nanoporous graphene: An efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Advances, 7(87), 55555-55566. doi:10.1039/c7ra10626b

Rowley-Neale, S. J., Smith, G. C., & Banks, C. E. (2017). Mass-Producible 2D-MoS2-Impregnated Screen-Printed Electrodes That Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction. ACS Applied Materials and Interfaces, 9(27), 22539-22548. doi:10.1021/acsami.7b05104

Whitehead, K. A., Vaidya, M., Liauw, C., Brownson, D., Ramalingam, P., Kamieniak, J., … Banks, C. (2017). Antimicrobial activity of graphene oxide-metal hybrids.. International Biodeterioration & Biodegradation, 123, 182-190. doi:10.1016/j.ibiod.2017.06.020

Foster, C. W., Down, M. P., Zhang, Y., Ji, X., Rowley-Neale, S. J., Smith, G. C., … Banks, C. E. (2017). 3D Printed Graphene Based Energy Storage Devices. Scientific Reports, 7. doi:10.1038/srep42233

Rowley-Neale, S. J., Foster, C. W., Smith, G. C., Brownson, D. A. C., & Banks, C. E. (2017). Mass-producible 2D-MoSe 2  bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. Sustainable Energy & Fuels, 1(1), 74-83. doi:10.1039/C6SE00115G

De-Mello, G. B., Smith, L., Rowley-Neale, S. J., Gruber, J., Hutton, S. J., & Banks, C. E. (2017). Surfactant-exfoliated 2D molybdenum disulphide
(2D-MoS2): the role of surfactant upon the
hydrogen evolution reaction. RSC Advances, 7(58), 36208-36213. doi:10.1039/c7ra05085b

Rowley-Neale, S. J., Brownson, D. A. C., & Banks, C. E. (2016). Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights. Nanoscale, 8(33), 15241-15251. doi:10.1039/c6nr04220a

Rowley-Neale, S. J., Fearn, J. M., Brownson, D. A. C., Smith, G. C., Ji, X., & Banks, C. E. (2016). 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction. Nanoscale, 8(31), 14767-14777. doi:10.1039/c6nr04073j

Rowley-Neale, S. J., Brownson, D. A. C., Smith, G. C., Sawtell, D. A. G., Kelly, P. J., & Banks, C. E. (2015). 2D nanosheet molybdenum disulphide (MoS<inf>2</inf>) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale, 7(43), 18152-18168. doi:10.1039/c5nr05164a